
Chapter 7

Random Binary Search Trees

In this chapter, we present a binary search tree structure that uses ran-
domization to achieve O(logn) expected time for all operations.

7.1 Random Binary Search Trees

Consider the two binary search trees shown in Figure 7.1, each of which
has n = 15 nodes. The one on the left is a list and the other is a perfectly
balanced binary search tree. The one on the left has a height of n−1 = 14
and the one on the right has a height of three.

Imagine how these two trees could have been constructed. The one on
the left occurs if we start with an empty BinarySearchTree and add the
sequence

〈0,1,2,3,4,5,6,7,8,9,10,11,12,13,14〉 .
No other sequence of additions will create this tree (as you can prove by
induction on n). On the other hand, the tree on the right can be created
by the sequence

〈7,3,11,1,5,9,13,0,2,4,6,8,10,12,14〉 .

Other sequences work as well, including

〈7,3,1,5,0,2,4,6,11,9,13,8,10,12,14〉 ,

and
〈7,3,1,11,5,0,2,4,6,9,13,8,10,12,14〉 .

153

§7.1 Random Binary Search Trees

0

1

2

3

. . .

14 0

1

2

3

4

5

6

7

8 10 12 14

139

11

Figure 7.1: Two binary search trees containing the integers 0, . . . ,14.

In fact, there are 21,964,800 addition sequences that generate the tree on
the right and only one that generates the tree on the left.

The above example gives some anecdotal evidence that, if we choose a
random permutation of 0, . . . ,14, and add it into a binary search tree, then
we are more likely to get a very balanced tree (the right side of Figure 7.1)
than we are to get a very unbalanced tree (the left side of Figure 7.1).

We can formalize this notion by studying random binary search trees.
A random binary search tree of size n is obtained in the following way: Take
a random permutation, x0, . . . ,xn−1, of the integers 0, . . . ,n− 1 and add its
elements, one by one, into a BinarySearchTree. By random permutation
we mean that each of the possible n! permutations (orderings) of 0, . . . ,n−1
is equally likely, so that the probability of obtaining any particular per-
mutation is 1/n!.

Note that the values 0, . . . ,n−1 could be replaced by any ordered set of
n elements without changing any of the properties of the random binary
search tree. The element x ∈ {0, . . . ,n − 1} is simply standing in for the
element of rank x in an ordered set of size n.

Before we can present our main result about random binary search
trees, we must take some time for a short digression to discuss a type of
number that comes up frequently when studying randomized structures.
For a non-negative integer, k, the k-th harmonic number, denoted Hk , is

154

Random Binary Search Trees §7.1

1

1/2

1/3

1/k

...

1 2 30 k. . .

f (x) = 1/x

1

1/2

1/3

1/k

...

1 2 3 k. . .

Figure 7.2: The kth harmonic numberHk =
∑k
i=1 1/i is upper- and lower-bounded

by two integrals. The value of these integrals is given by the area of the shaded
region, while the value of Hk is given by the area of the rectangles.

defined as

Hk = 1 + 1/2 + 1/3 + · · ·+ 1/k .

The harmonic numberHk has no simple closed form, but it is very closely
related to the natural logarithm of k. In particular,

lnk < Hk ≤ lnk + 1 .

Readers who have studied calculus might notice that this is because the

integral
∫ k

1 (1/x)dx = lnk. Keeping in mind that an integral can be in-
terpreted as the area between a curve and the x-axis, the value of Hk
can be lower-bounded by the integral

∫ k
1 (1/x)dx and upper-bounded by

1 +
∫ k

1 (1/x)dx. (See Figure 7.2 for a graphical explanation.)

Lemma 7.1. In a random binary search tree of size n, the following statements
hold:

1. For any x ∈ {0, . . . ,n − 1}, the expected length of the search path for x is
Hx+1 +Hn−x −O(1).1

2. For any x ∈ (−1,n) \ {0, . . . ,n− 1}, the expected length of the search path
for x is Hdxe +Hn−dxe.

1The expressions x+1 and n−x can be interpreted respectively as the number of elements
in the tree less than or equal to x and the number of elements in the tree greater than or
equal to x.

155

§7.1 Random Binary Search Trees

We will prove Lemma 7.1 in the next section. For now, consider what
the two parts of Lemma 7.1 tell us. The first part tells us that if we search
for an element in a tree of size n, then the expected length of the search
path is at most 2lnn+O(1). The second part tells us the same thing about
searching for a value not stored in the tree. When we compare the two
parts of the lemma, we see that it is only slightly faster to search for some-
thing that is in the tree compared to something that is not.

7.1.1 Proof of Lemma 7.1

The key observation needed to prove Lemma 7.1 is the following: The
search path for a value x in the open interval (−1,n) in a random binary
search tree, T , contains the node with key i < x if, and only if, in the
random permutation used to create T , i appears before any of {i + 1, i +
2, . . . ,bxc}.

To see this, refer to Figure 7.3 and notice that until some value in
{i, i + 1, . . . ,bxc} is added, the search paths for each value in the open in-
terval (i − 1,bxc+ 1) are identical. (Remember that for two values to have
different search paths, there must be some element in the tree that com-
pares differently with them.) Let j be the first element in {i, i+1, . . . ,bxc} to
appear in the random permutation. Notice that j is now and will always
be on the search path for x. If j , i then the node uj containing j is created
before the node ui that contains i. Later, when i is added, it will be added
to the subtree rooted at uj .left, since i < j. On the other hand, the search
path for x will never visit this subtree because it will proceed to uj .right
after visiting uj .

Similarly, for i > x, i appears in the search path for x if and only if
i appears before any of {dxe,dxe + 1, . . . , i − 1} in the random permutation
used to create T .

Notice that, if we start with a random permutation of {0, . . . ,n}, then
the subsequences containing only {i, i + 1, . . . ,bxc} and {dxe,dxe+ 1, . . . , i −1}
are also random permutations of their respective elements. Each element,
then, in the subsets {i, i+1, . . . ,bxc} and {dxe,dxe+1, . . . , i−1} is equally likely
to appear before any other in its subset in the random permutation used

156

Random Binary Search Trees §7.1

. . . , i, . . . , j − 1 j +1, . . . ,bxc, . . .

j

Figure 7.3: The value i < x is on the search path for x if and only if i is the first
element among {i, i + 1, . . . ,bxc} added to the tree.

to create T . So we have

Pr{i is on the search path for x} =
{

1/(bxc − i + 1) if i < x
1/(i − dxe+ 1) if i > x .

With this observation, the proof of Lemma 7.1 involves some simple
calculations with harmonic numbers:

Proof of Lemma 7.1. Let Ii be the indicator random variable that is equal
to one when i appears on the search path for x and zero otherwise. Then
the length of the search path is given by

∑

i∈{0,...,n−1}\{x}
Ii

so, if x ∈ {0, . . . ,n − 1}, the expected length of the search path is given by

157

§7.1 Random Binary Search Trees

0 1 x− 1 x x+1 n− 1

1
2

1
2

1
3

1
3

1
x+1

1
x

1
n−x· · ·· · ·

· · · · · ·i

Pr{Ii = 1}

(a)

0 1 bxc dxe n− 1

1 1
2

1
2

1
3

1
bxc+1

1
bxc

1
n−bxc· · ·· · ·

· · · · · ·i

Pr{Ii = 1} 1
3 1

(b)

Figure 7.4: The probabilities of an element being on the search path for x when
(a) x is an integer and (b) when x is not an integer.

(see Figure 7.4.a)

E

x−1∑

i=0

Ii +
n−1∑

i=x+1

Ii

 =

x−1∑

i=0

E[Ii] +
n−1∑

i=x+1

E[Ii]

=
x−1∑

i=0

1/(bxc − i + 1) +
n−1∑

i=x+1

1/(i − dxe+ 1)

=
x−1∑

i=0

1/(x− i + 1) +
n−1∑

i=x+1

1/(i − x+ 1)

=
1
2

+
1
3

+ · · ·+ 1
x+ 1

+
1
2

+
1
3

+ · · ·+ 1
n− x

=Hx+1 +Hn−x − 2 .

The corresponding calculations for a search value x ∈ (−1,n) \ {0, . . . ,n−1}
are almost identical (see Figure 7.4.b).

7.1.2 Summary

The following theorem summarizes the performance of a random binary
search tree:

158

Treap: A Randomized Binary Search Tree §7.2

Theorem 7.1. A random binary search tree can be constructed in O(n logn)
time. In a random binary search tree, the find(x) operation takes O(logn)
expected time.

We should emphasize again that the expectation in Theorem 7.1 is
with respect to the random permutation used to create the random binary
search tree. In particular, it does not depend on a random choice of x; it
is true for every value of x.

7.2 Treap: A Randomized Binary Search Tree

The problem with random binary search trees is, of course, that they
are not dynamic. They don’t support the add(x) or remove(x) operations
needed to implement the SSet interface. In this section we describe a
data structure called a Treap that uses Lemma 7.1 to implement the SSet
interface.2

A node in a Treap is like a node in a BinarySearchTree in that it has
a data value, x, but it also contains a unique numerical priority, p, that is
assigned at random:

Treap
class Node<T> extends BSTNode<Node<T>,T> {

int p;
}

In addition to being a binary search tree, the nodes in a Treap also
obey the heap property:

• (Heap Property) At every node u, except the root, u.parent.p < u.p.

In other words, each node has a priority smaller than that of its two chil-
dren. An example is shown in Figure 7.5.

The heap and binary search tree conditions together ensure that, once
the key (x) and priority (p) for each node are defined, the shape of the
Treap is completely determined. The heap property tells us that the node

2The names Treap comes from the fact that this data structure is simultaneously a binary
search tree (Section 6.2) and a heap (Chapter 10).

159

§7.2 Random Binary Search Trees

6,42

0,9

1,6

2,99

3,1

5,11

4,14

7,22

9,17

8,49

Figure 7.5: An example of a Treap containing the integers 0, . . . ,9. Each node, u,
is illustrated as a box containing u.x,u.p.

with minimum priority has to be the root, r, of the Treap. The binary
search tree property tells us that all nodes with keys smaller than r.x are
stored in the subtree rooted at r.left and all nodes with keys larger than
r.x are stored in the subtree rooted at r.right.

The important point about the priority values in a Treap is that they
are unique and assigned at random. Because of this, there are two equiv-
alent ways we can think about a Treap. As defined above, a Treap obeys
the heap and binary search tree properties. Alternatively, we can think
of a Treap as a BinarySearchTree whose nodes were added in increasing
order of priority. For example, the Treap in Figure 7.5 can be obtained by
adding the sequence of (x,p) values

〈(3,1), (1,6), (0,9), (5,11), (4,14), (9,17), (7,22), (6,42), (8,49), (2,99)〉

into a BinarySearchTree.
Since the priorities are chosen randomly, this is equivalent to taking a

random permutation of the keys—in this case the permutation is

〈3,1,0,5,9,4,7,6,8,2〉

—and adding these to a BinarySearchTree. But this means that the
shape of a treap is identical to that of a random binary search tree. In

160

Treap: A Randomized Binary Search Tree §7.2

particular, if we replace each key x by its rank,3 then Lemma 7.1 applies.
Restating Lemma 7.1 in terms of Treaps, we have:

Lemma 7.2. In a Treap that stores a set S of n keys, the following statements
hold:

1. For any x ∈ S, the expected length of the search path for x is Hr(x)+1 +
Hn−r(x) −O(1).

2. For any x < S, the expected length of the search path for x is Hr(x) +
Hn−r(x).

Here, r(x) denotes the rank of x in the set S ∪ {x}.

Again, we emphasize that the expectation in Lemma 7.2 is taken over
the random choices of the priorities for each node. It does not require any
assumptions about the randomness in the keys.

Lemma 7.2 tells us that Treaps can implement the find(x) operation
efficiently. However, the real benefit of a Treap is that it can support the
add(x) and delete(x) operations. To do this, it needs to perform rotations
in order to maintain the heap property. Refer to Figure 7.6. A rotation
in a binary search tree is a local modification that takes a parent u of a
node w and makes w the parent of u, while preserving the binary search
tree property. Rotations come in two flavours: left or right depending on
whether w is a right or left child of u, respectively.

The code that implements this has to handle these two possibilities
and be careful of a boundary case (when u is the root), so the actual code
is a little longer than Figure 7.6 would lead a reader to believe:

BinarySearchTree
void rotateLeft(Node u) {

Node w = u.right;
w.parent = u.parent;
if (w.parent != nil) {

if (w.parent.left == u) {
w.parent.left = w;

} else {

3The rank of an element x in a set S of elements is the number of elements in S that are
less than x.

161

§7.2 Random Binary Search Trees

rotateRight(u) ⇒
⇐ rotateLeft(w)

A B

C

w

u

A

B C

u

w

Figure 7.6: Left and right rotations in a binary search tree.

w.parent.right = w;
}

}
u.right = w.left;
if (u.right != nil) {

u.right.parent = u;
}
u.parent = w;
w.left = u;
if (u == r) { r = w; r.parent = nil; }

}
void rotateRight(Node u) {

Node w = u.left;
w.parent = u.parent;
if (w.parent != nil) {

if (w.parent.left == u) {
w.parent.left = w;

} else {
w.parent.right = w;

}
}
u.left = w.right;
if (u.left != nil) {

u.left.parent = u;
}
u.parent = w;
w.right = u;

162

Treap: A Randomized Binary Search Tree §7.2

if (u == r) { r = w; r.parent = nil; }
}

In terms of the Treap data structure, the most important property of
a rotation is that the depth of w decreases by one while the depth of u
increases by one.

Using rotations, we can implement the add(x) operation as follows:
We create a new node, u, assign u.x = x, and pick a random value for u.p.
Next we add u using the usual add(x) algorithm for a BinarySearchTree,
so that u is now a leaf of the Treap. At this point, our Treap satisfies
the binary search tree property, but not necessarily the heap property. In
particular, it may be the case that u.parent.p > u.p. If this is the case, then
we perform a rotation at node w=u.parent so that u becomes the parent of
w. If u continues to violate the heap property, we will have to repeat this,
decreasing u’s depth by one every time, until u either becomes the root or
u.parent.p < u.p.

Treap
boolean add(T x) {

Node<T> u = newNode();
u.x = x;
u.p = rand.nextInt();
if (super.add(u)) {

bubbleUp(u);
return true;

}
return false;

}
void bubbleUp(Node<T> u) {

while (u.parent != nil && u.parent.p > u.p) {
if (u.parent.right == u) {
rotateLeft(u.parent);

} else {
rotateRight(u.parent);

}
}
if (u.parent == nil) {

r = u;
}

163

§7.2 Random Binary Search Trees

}

An example of an add(x) operation is shown in Figure 7.7.
The running time of the add(x) operation is given by the time it takes

to follow the search path for x plus the number of rotations performed
to move the newly-added node, u, up to its correct location in the Treap.
By Lemma 7.2, the expected length of the search path is at most 2lnn +
O(1). Furthermore, each rotation decreases the depth of u. This stops if
u becomes the root, so the expected number of rotations cannot exceed
the expected length of the search path. Therefore, the expected running
time of the add(x) operation in a Treap is O(logn). (Exercise 7.5 asks
you to show that the expected number of rotations performed during an
addition is actually only O(1).)

The remove(x) operation in a Treap is the opposite of the add(x) op-
eration. We search for the node, u, containing x, then perform rotations
to move u downwards until it becomes a leaf, and then we splice u from
the Treap. Notice that, to move u downwards, we can perform either a
left or right rotation at u, which will replace u with u.right or u.left,
respectively. The choice is made by the first of the following that apply:

1. If u.left and u.right are both null, then u is a leaf and no rotation
is performed.

2. If u.left (or u.right) is null, then perform a right (or left, respec-
tively) rotation at u.

3. If u.left.p < u.right.p (or u.left.p > u.right.p), then perform a
right rotation (or left rotation, respectively) at u.

These three rules ensure that the Treap doesn’t become disconnected and
that the heap property is restored once u is removed.

Treap
boolean remove(T x) {

Node<T> u = findLast(x);
if (u != nil && compare(u.x, x) == 0) {

trickleDown(u);
splice(u);
return true;

164

Treap: A Randomized Binary Search Tree §7.2

6,42

0,9

1,6

2,99

3,1

5,11

4,14

7,22

9,14

8,49

1.5,4

6,42

0,9

1,6

2,99

3,1

5,11

4,14

7,22

9,14

8,49

1.5,4

6,42

0,9

1,6 2,99

3,1

5,11

4,14

7,22

9,14

8,49

1.5,4

Figure 7.7: Adding the value 1.5 into the Treap from Figure 7.5.

165

§7.2 Random Binary Search Trees

}
return false;

}
void trickleDown(Node<T> u) {

while (u.left != nil || u.right != nil) {
if (u.left == nil) {
rotateLeft(u);

} else if (u.right == nil) {
rotateRight(u);

} else if (u.left.p < u.right.p) {
rotateRight(u);

} else {
rotateLeft(u);

}
if (r == u) {
r = u.parent;

}
}

}

An example of the remove(x) operation is shown in Figure 7.8.
The trick to analyze the running time of the remove(x) operation is to

notice that this operation reverses the add(x) operation. In particular, if
we were to reinsert x, using the same priority u.p, then the add(x) opera-
tion would do exactly the same number of rotations and would restore the
Treap to exactly the same state it was in before the remove(x) operation
took place. (Reading from bottom-to-top, Figure 7.8 illustrates the addi-
tion of the value 9 into a Treap.) This means that the expected running
time of the remove(x) on a Treap of size n is proportional to the expected
running time of the add(x) operation on a Treap of size n−1. We conclude
that the expected running time of remove(x) is O(logn).

7.2.1 Summary

The following theorem summarizes the performance of the Treap data
structure:

Theorem 7.2. A Treap implements the SSet interface. A Treap supports
the operations add(x), remove(x), and find(x) in O(logn) expected time per

166

Treap: A Randomized Binary Search Tree §7.2

6,42

0,9

1,6

2,99

3,1

5,11

4,14

7,22

9,17

8,49

6,42

0,9

1,6

2,99

3,1

5,11

4,14 7,22

9,17

8,49

6,42

0,9

1,6

2,99

3,1

5,11

4,14 7,22

9,17

8,49

6,42

0,9

1,6

2,99

3,1

5,11

4,14 7,22

8,49

Figure 7.8: Removing the value 9 from the Treap in Figure 7.5.

167

§7.3 Random Binary Search Trees

operation.

It is worth comparing the Treap data structure to the SkiplistSSet
data structure. Both implement the SSet operations in O(logn) expected
time per operation. In both data structures, add(x) and remove(x) involve
a search and then a constant number of pointer changes (see Exercise 7.5
below). Thus, for both these structures, the expected length of the search
path is the critical value in assessing their performance. In a SkiplistS-
Set, the expected length of a search path is

2logn+O(1) ,

In a Treap, the expected length of a search path is

2lnn+O(1) ≈ 1.386logn+O(1) .

Thus, the search paths in a Treap are considerably shorter and this trans-
lates into noticeably faster operations on Treaps than Skiplists. Exer-
cise 4.7 in Chapter 4 shows how the expected length of the search path in
a Skiplist can be reduced to

e lnn+O(1) ≈ 1.884logn+O(1)

by using biased coin tosses. Even with this optimization, the expected
length of search paths in a SkiplistSSet is noticeably longer than in a
Treap.

7.3 Discussion and Exercises

Random binary search trees have been studied extensively. Devroye [19]
gives a proof of Lemma 7.1 and related results. There are much stronger
results in the literature as well, the most impressive of which is due to
Reed [64], who shows that the expected height of a random binary search
tree is

α lnn− β lnlnn+O(1)

where α ≈ 4.31107 is the unique solution on the interval [2,∞) of the
equation α ln((2e/α)) = 1 and β = 3

2ln(α/2) . Furthermore, the variance of
the height is constant.

168

Discussion and Exercises §7.3

The name Treap was coined by Seidel and Aragon [67] who discussed
Treaps and some of their variants. However, their basic structure was
studied much earlier by Vuillemin [76] who called them Cartesian trees.

One possible space-optimization of the Treap data structure is the
elimination of the explicit storage of the priority p in each node. In-
stead, the priority of a node, u, is computed by hashing u’s address in
memory (in 32-bit Java, this is equivalent to hashing u.hashCode()). Al-
though a number of hash functions will probably work well for this in
practice, for the important parts of the proof of Lemma 7.1 to remain
valid, the hash function should be randomized and have the min-wise in-
dependent property: For any distinct values x1, . . . ,xk , each of the hash val-
ues h(x1), . . . ,h(xk) should be distinct with high probability and, for each
i ∈ {1, . . . , k},

Pr{h(xi) = min{h(x1), . . . ,h(xk)}} ≤ c/k
for some constant c. One such class of hash functions that is easy to im-
plement and fairly fast is tabulation hashing (Section 5.2.3).

Another Treap variant that doesn’t store priorities at each node is the
randomized binary search tree of Martı́nez and Roura [51]. In this vari-
ant, every node, u, stores the size, u.size, of the subtree rooted at u. Both
the add(x) and remove(x) algorithms are randomized. The algorithm for
adding x to the subtree rooted at u does the following:

1. With probability 1/(size(u)+1), the value x is added the usual way,
as a leaf, and rotations are then done to bring x up to the root of this
subtree.

2. Otherwise (with probability 1 − 1/(size(u) + 1)), the value x is re-
cursively added into one of the two subtrees rooted at u.left or
u.right, as appropriate.

The first case corresponds to an add(x) operation in a Treap where x’s
node receives a random priority that is smaller than any of the size(u)
priorities in u’s subtree, and this case occurs with exactly the same prob-
ability.

Removing a value x from a randomized binary search tree is similar to
the process of removing from a Treap. We find the node, u, that contains
x and then perform rotations that repeatedly increase the depth of u until

169

§7.3 Random Binary Search Trees

it becomes a leaf, at which point we can splice it from the tree. The choice
of whether to perform a left or right rotation at each step is randomized.

1. With probability u.left.size/(u.size− 1), we perform a right rota-
tion at u, making u.left the root of the subtree that was formerly
rooted at u.

2. With probability u.right.size/(u.size− 1), we perform a left rota-
tion at u, making u.right the root of the subtree that was formerly
rooted at u.

Again, we can easily verify that these are exactly the same probabilities
that the removal algorithm in a Treap will perform a left or right rotation
of u.

Randomized binary search trees have the disadvantage, compared to
treaps, that when adding and removing elements they make many ran-
dom choices, and they must maintain the sizes of subtrees. One advan-
tage of randomized binary search trees over treaps is that subtree sizes
can serve another useful purpose, namely to provide access by rank in
O(logn) expected time (see Exercise 7.10). In comparison, the random
priorities stored in treap nodes have no use other than keeping the treap
balanced.

Exercise 7.1. Illustrate the addition of 4.5 (with priority 7) and then 7.5
(with priority 20) on the Treap in Figure 7.5.

Exercise 7.2. Illustrate the removal of 5 and then 7 on the Treap in Fig-
ure 7.5.

Exercise 7.3. Prove the assertion that there are 21,964,800 sequences
that generate the tree on the right hand side of Figure 7.1. (Hint: Give a
recursive formula for the number of sequences that generate a complete
binary tree of height h and evaluate this formula for h = 3.)

Exercise 7.4. Design and implement the permute(a) method that takes as
input an array, a, that contains n distinct values and randomly permutes
a. The method should run in O(n) time and you should prove that each
of the n! possible permutations of a is equally probable.

170

Discussion and Exercises §7.3

Exercise 7.5. Use both parts of Lemma 7.2 to prove that the expected
number of rotations performed by an add(x) operation (and hence also a
remove(x) operation) is O(1).

Exercise 7.6. Modify the Treap implementation given here so that it does
not explicitly store priorities. Instead, it should simulate them by hashing
the hashCode() of each node.

Exercise 7.7. Suppose that a binary search tree stores, at each node, u,
the height, u.height, of the subtree rooted at u, and the size, u.size of the
subtree rooted at u.

1. Show how, if we perform a left or right rotation at u, then these two
quantities can be updated, in constant time, for all nodes affected
by the rotation.

2. Explain why the same result is not possible if we try to also store
the depth, u.depth, of each node u.

Exercise 7.8. Design and implement an algorithm that constructs a Treap
from a sorted array, a, of n elements. This method should run in O(n)
worst-case time and should construct a Treap that is indistinguishable
from one in which the elements of a were added one at a time using the
add(x) method.

Exercise 7.9. This exercise works out the details of how one can effi-
ciently search a Treap given a pointer that is close to the node we are
searching for.

1. Design and implement a Treap implementation in which each node
keeps track of the minimum and maximum values in its subtree.

2. Using this extra information, add a fingerFind(x,u) method that
executes the find(x) operation with the help of a pointer to the node
u (which is hopefully not far from the node that contains x). This
operation should start at u and walk upwards until it reaches a node
w such that w.min ≤ x ≤ w.max. From that point onwards, it should
perform a standard search for x starting from w. (One can show
that fingerFind(x,u) takes O(1 + logr) time, where r is the number
of elements in the treap whose value is between x and u.x.)

171

§7.3 Random Binary Search Trees

3. Extend your implementation into a version of a treap that starts
all its find(x) operations from the node most recently found by
find(x).

Exercise 7.10. Design and implement a version of a Treap that includes
a get(i) operation that returns the key with rank i in the Treap. (Hint:
Have each node, u, keep track of the size of the subtree rooted at u.)

Exercise 7.11. Implement a TreapList, an implementation of the List
interface as a treap. Each node in the treap should store a list item, and
an in-order traversal of the treap finds the items in the same order that
they occur in the list. All the List operations get(i), set(i,x), add(i,x)
and remove(i) should run in O(logn) expected time.

Exercise 7.12. Design and implement a version of a Treap that supports
the split(x) operation. This operation removes all values from the Treap
that are greater than x and returns a second Treap that contains all the
removed values.
Example: the code t2 = t.split(x) removes from t all values greater than
x and returns a new Treap t2 containing all these values. The split(x)
operation should run in O(logn) expected time.
Warning: For this modification to work properly and still allow the size()
method to run in constant time, it is necessary to implement the modifi-
cations in Exercise 7.10.

Exercise 7.13. Design and implement a version of a Treap that supports
the absorb(t2) operation, which can be thought of as the inverse of the
split(x) operation. This operation removes all values from the Treap
t2 and adds them to the receiver. This operation presupposes that the
smallest value in t2 is greater than the largest value in the receiver. The
absorb(t2) operation should run in O(logn) expected time.

Exercise 7.14. Implement Martinez’s randomized binary search trees, as
discussed in this section. Compare the performance of your implementa-
tion with that of the Treap implementation.

172

